Clarification and incremental meaning/content refinement

Robin Cooper
Göteborg University
Contents

1 Clarification and meaning/content 3
2 Record type-theoretical semantics 11
3 Applying record-type theoretical semantics to clarification 18
1. Clarification and meaning/content
Simple clarification exchanges

A: Bo left
B: Bo?
A: Bo Ralph (distinguished occupant of Seat No. 2, Swedish Academy)
B: Oh

What are the consequences for notions of meaning and content?
Treatment of proper names

- Not logical constants
- Instead: $x \mid \text{named}(x, \text{“Bo”})$

cf. early situation semantics literature
Content tout court

A: Bo left
B: Bo?

What is the content of A’s utterance at this point in the dialogue? More useful to talk of

- the content for A (“speaker”-content)
- the content for B (“hearer”-content)

cf. early situation semantics literature
Clarification as an argument for structured meaning/content

A: Bo left
B: Bo?

In order to be able to analyze the content of B’s utterance you at least need access to the content of constituents of A’s utterance.

cf. a number of proposals for structured meanings, use of structured objects in situation semantics
Clarification and Montague/Kaplan meaning functions

A: Bo left

- At this point \(B \), not having a referent for \(Bo \), has gained the information “Somebody named Bo left”.

- Not strictly obtainable on the classical view of meaning as a function from contexts to content (since the context is not in the domain of the function).

- Need to coerce the meaning function.

- Not sufficient to say that \(B \) has not yet been able to compute a content of \(A \)’s utterance.
B: Bo?
A: Bo Ralph

- At this point B, having a referent for *Bo Ralph*, now has a referent for *Bo* and has gained the information “Bo Ralph left”.
- In order to compute this we need to get back the original non-coerced meaning function.
• In earlier work on record type-theoretic semantics, I was pleased that we were able to define the coercions relatively elegantly.

• Now I think there’s a better way to do it, reflecting incremental specification of content and relaxing the rigid division between meaning and content of the classical Montague/Kaplan view.
2. Record type-theoretical semantics
Ingredients from (Martin-Löf) type theory

- records and record types
- dependent types
- “propositions” as types (of proofs)
- types as objects
- functions (λ-calculus)
- dependent function types
Records and record types

If $a_1 : T_1$, $a_2 : T_2(a_1)$, \ldots , $a_n : T_n(a_1, a_2, \ldots , a_{n-1})$, the record:

$$\begin{bmatrix}
 l_1 & = & a_1 \\
 l_2 & = & a_2 \\
 \vdots & & \vdots \\
 l_n & = & a_n \\
 \vdots & & \vdots
\end{bmatrix}$$

is of type:

$$\begin{bmatrix}
 l_1 & : & T_1 \\
 l_2 & : & T_2(l_1) \\
 \vdots & & \vdots \\
 l_n & : & T_n(l_1, l_2, \ldots , l_{n-1})
\end{bmatrix}$$

\Leftarrow contents
a man owns a donkey

Record type:

\[
\begin{bmatrix}
 x & : & Ind \\
 c_1 & : & \text{man}(x) \\
 y & : & Ind \\
 c_2 & : & \text{donkey}(y) \\
 c_3 & : & \text{own}(x,y)
\end{bmatrix}
\]

Record:

\[
\begin{bmatrix}
 x & = & a \\
 c_1 & = & p_1 \\
 y & = & b \\
 c_2 & = & p_2 \\
 c_3 & = & p_3
\end{bmatrix}
\]

where

- \(a, b\) are of type \(Ind\), individuals
- \(p_1\) is a proof of \(\text{man}(a)\)
- \(p_2\) is a proof of \(\text{donkey}(b)\)
- \(p_3\) is a proof of \(\text{own}(a, b)\)

\(\Leftarrow\) contents
a man owns a donkey

Content (intension) is a record type:

\[
\begin{array}{ll}
x & : \text{Ind} \\
c_1 & : \text{man}(x) \\
y & : \text{Ind} \\
c_2 & : \text{donkey}(y) \\
c_3 & : \text{own}(x,y)
\end{array}
\]

- a record of this type may have additional fields
- the types man(x), donkey(y), own(x,y) are dependent types of proofs
Meaning

A function from contexts (modelled as records) to record types, i.e. of type \((T)\text{RecType}\), where \(T\) is some record type.

\[\lambda r:\text{Rec} \left(\begin{array}{l} x : \text{Ind} \\ c_1 : \text{man}(x) \\ y : \text{Ind} \\ c_2 : \text{donkey}(y) \\ c_3 : \text{own}(x,y) \end{array} \right) \]

of type \((\text{Rec})\text{RecType}\)
Meanings as dependent functions

Sam owns a donkey

$$\lambda r: \begin{bmatrix} x & : & Ind \\ c_1 & : & \text{named}(x, \text{“Sam”}) \end{bmatrix} \left(\begin{bmatrix} y & : & Ind \\ c_2 & : & \text{donkey}(y) \\ c_3 & : & \text{own}(r.x,y) \end{bmatrix} \right)$$

cf. Montague, Kaplan
and within type theory using type theoretical contexts Ranta, Ahn, Piwek
among many others
3. Applying record-type theoretical semantics to clarification
The coercion analysis

A: Bo left

B computes meaning of A’s utterance:

$$
\lambda r: \left[\begin{array}{l}
x : \text{Ind} \\
c_1 : \text{named}(x, "Bo")
\end{array} \right] \left(\left[c_2 : \text{leave}(r.x) \right] \right)
$$

B notices that her context is not of the right type to be an argument to this function, computes a coerced function by “lowering”:

$$
\lambda r: \text{Rec} \left(\left[\begin{array}{l}
x : \text{Ind} \\
c_1 : \text{named}(x, "Bo") \\
c_2 : \text{leave}(x)
\end{array} \right] \right)
$$

B applies this content to her context to obtain content:

$$
\left[\begin{array}{l}
x : \text{Ind} \\
c_1 : \text{named}(x, "Bo") \\
c_2 : \text{leave}(x)
\end{array} \right] \rightleftharpoons \text{contents}
$$
B: Bo?
A: Bo Ralph

B reaccesses original meaning of A’s first utterance:

$$\lambda r:\left[\begin{array}{l}
x & : & \text{Ind} \\
c_1 & : & \text{named}(x, "Bo")
\end{array} \right] \left(\begin{array}{l}
c_2 & : & \text{leave}(r.x)
\end{array} \right)$$

Applies to updated context to obtain new content:

$$\left[\begin{array}{l}
c_2 & : & \text{leave}(bo_ralph)
\end{array} \right]$$
The “unification” analysis

- corresponds to the use of c-params in HPSG.
- meaning modelled as a record type rather than a function
- *i.e.* meaning and content are both record types
- important for incrementality
A: Bo left

\[\text{B computes meaning of A's utterance:} \]
\[
\begin{array}{c}
\text{cntxt} : \begin{cases}
x : \text{Ind} \\
c_1 : \text{named}(x, "Bo") \\
c_2 : \text{leave}(\text{cntxt}.x)
\end{cases} \\
\end{array}
\]
\((= T) \)

\(T \) is defined wrt to context \(r \) iff \(r : T.\text{cntxt} \)

\(T \) is true wrt to context \(r \) iff \(T \) is defined wrt \(r \) and inhabited

\(T \) is false wrt to context \(r \) iff \(T \) is defined wrt \(r \) and uninhabited

Note that \(T \) (the meaning) is either inhabited or not so we have a notion of truth for meanings independent of context.

\(\iff \text{contents} \)
So what context are we in?

- safe to assume we have *incomplete* information
- *i.e.*, the context is *underspecified*
- underspecified objects represented by types
A context type

\[
\begin{array}{c}
x : Ind \\
c_1 : \text{named}(x, \text{“Bo”})
\end{array}
\]

But how do you show that the context is specified?
Manifest fields

Coquand, Pollack and Takeyama

If $a : T$, then T_a is a singleton type

$b : T_a$ iff $b = a$

A manifest field in a record type is one whose type is a singleton type, e.g.

\[
\begin{array}{c}
 x : T_a \\
\end{array}
\]

written for convenience as

\[
\begin{array}{c}
 x \text{=} a : T \\
\end{array}
\]

Allows record types to be “progressively instantiated”.

We will allow dependent unique types, i.e. where a can be represented by a path in a record type.
A specified context type

\[
\begin{bmatrix}
\text{x=bo_ralph} & : Ind \\
\text{c1} & : \text{named(x, “Bo”)}
\end{bmatrix}
\]
Combining meaning and context

- Can’t do function application now
- Type conjunction (meet) instead

If T_1 and T_2 are types, then $T_1 \land T_2$ is also a type.

$a : T_1 \land T_2$ iff $a : T_1$ and $a : T_2$
Simplifying meets of record types

If \(T_1 \) and \(T_2 \) are record types then there will always be a record type (not a meet) \(T_3 \) which is equivalent to \(T_1 \land T_2 \) (in the sense that \(a : T_3 \iff a : T_1 \land T_2 \)).

Some examples:

\[
[f : T_1] \land [g : T_2] \approx [f : T_1, g : T_2] \\
[f : T_1] \land [f : T_2] \approx [f : T_1 \land T_2]
\]
Continuing with the dialogue...

B: Bo?
A: Bo Ralph

B conjoins her updated context type with the meaning type for A original utterance:

\[
\begin{align*}
\text{cntxt} & : \begin{bmatrix}
 x & : & \text{Ind} \\
 c_1 & : & \text{named}(x, \text{“Bo”}) \\
 c_2 & : & \text{leave}(\text{cntxt}.x)
\end{bmatrix} \\
\approx & \\
\text{cntxt} & : \begin{bmatrix}
 x=\text{bo_ralph} & : & \text{Ind} \\
 c_1 & : & \text{named}(x, \text{“Bo”}) \\
 c_2 & : & \text{leave}(\text{cntxt}.x)
\end{bmatrix}
\end{align*}
\]
Features of the “unification” approach

- new meets can be formed as context information comes in allowing incremental specification of content

- avoids coercion of functions and retrieving uncoerced versions (or slightly less coerced versions)

- the Montague/Kaplan meaning-content dichotomy has given way to incremental specification of meaning/content

- we have not given up the traditional paraphernalia of semantics such as binding, quantification, functions (e.g. used in connection with compositional semantics) as we have to do with a unification based system

⇐ contents